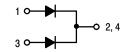
Switch Mode Power Rectifiers

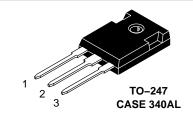
These state-of-the-art devices are designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-247 Package
- High Voltage Capability to 600 V
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures
- Epoxy Meets UL 94 V-0 @ 0.125 in
- High Temperature Glass Passivated Junction
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

Mechanical Characteristics:


- Case: Epoxy, Molded
- Weight: 4.3 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 30 Units Per Plastic Tube



ON Semiconductor®


http://onsemi.com

ULTRAFAST RECTIFIERS 30 AMPERES, 200-600 VOLTS

MARKING DIAGRAM

MUR30x0WT = Device Code

x = 2, 4 or 6

= Pb-Free Package

A = Assembly Location

Y = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MUR3020WTG	TO-247 (Pb-Free)	30 Units/Rail
MUR3040WTG	TO-247 (Pb-Free)	30 Units/Rail
MUR3060WTG	TO-247 (Pb-Free)	30 Units/Rail

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS (Per Leg)

Rating	Symbol	MUR3020WT	MUR3040WT	MUR3060WT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	400	600	V
Average Rectified Forward Current @ 145°C Total Device	I _{F(AV)}	15 30			Α
Peak Repetitive Surge Current (Rated V _R , Square Wave, 20 kHz, T _C = 145°C)	I _{FM}	30			Α
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	200	150	150	А
Operating Junction and Storage Temperature	T _J , T _{stg}		- 65 to +175		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (Per Leg)

Rating	Symbol	MUR3020WT	MUR3040WT	MUR3060WT	Unit
Maximum Thermal Resistance, – Junction–to–Case – Junction–to–Ambient	$R_{ heta JC} \ R_{ heta JA}$		1.5 40		°C/W

ELECTRICAL CHARACTERISTICS (Per Leg)

Rating	Symbol	MUR3020WT	MUR3040WT	MUR3060WT	Unit
Maximum Instantaneous Forward Voltage (Note 1) $(I_F = 15 \text{ Amp}, T_C = 150^{\circ}\text{C})$ $(I_F = 15 \text{ Amp}, T_C = 25^{\circ}\text{C})$	V _F	0.85 1.05	1.12 1.25	1.4 1.7	V
Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, $T_J = 150^{\circ}\text{C}$) (Rated DC Voltage, $T_J = 25^{\circ}\text{C}$)	i _R	500 10	500 10	1000 10	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 Amps/ μ s)	t _{rr}	35	60	60	ns
Typical Peak Reverse Recovery Current (I _F = 1.0 A, di/dt = 50 A/µs)	I _{RM}	0.7			Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width = $300 \mu s$, Duty Cycle $\leq 2.0\%$.

MUR3020WT

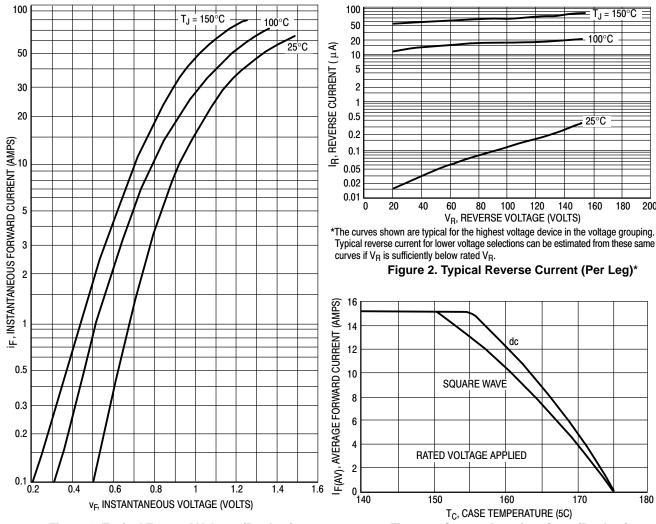


Figure 1. Typical Forward Voltage (Per Leg)

Figure 3. Current Derating, Case (Per Leg)

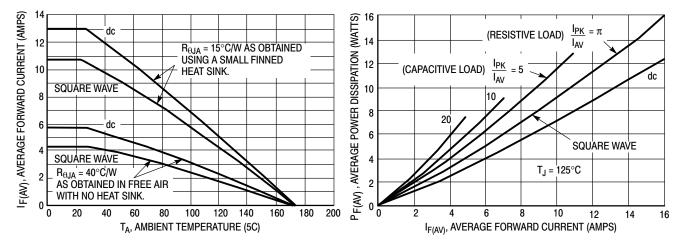


Figure 4. Current Derating, Ambient (Per Leg)

Figure 5. Power Dissipation (Per Leg)

MUR3040WTG

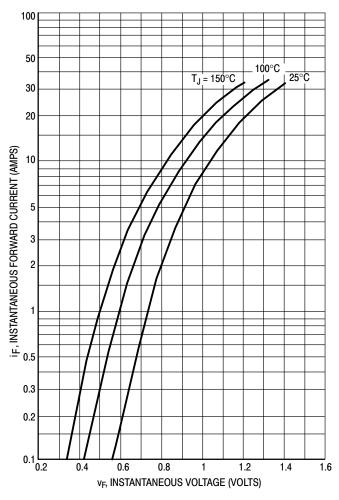
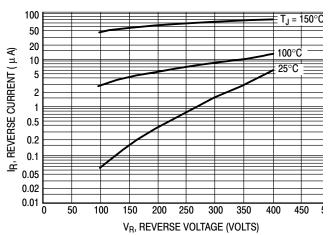



Figure 6. Typical Forward Voltage (Per Leg)

*The curves shown are typical for the highest voltage device in the voltage groupir Typical reverse current for lower voltage selections can be estimated from these sar curves if V_R is sufficiently below rated V_R .

Figure 7. Typical Reverse Current (Per Leg)*

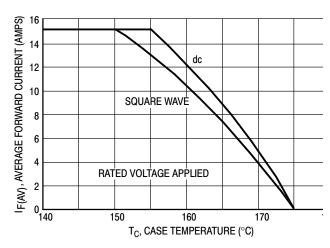


Figure 8. Current Derating, Case (Per Leg)

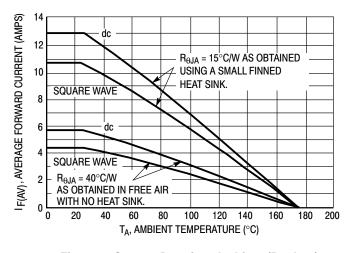


Figure 9. Current Derating, Ambient (Per Leg)

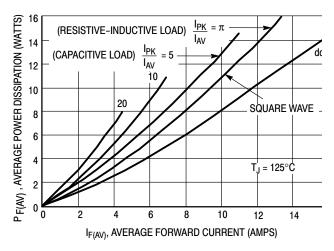


Figure 10. Power Dissipation (Per Leg)

MUR3060WT

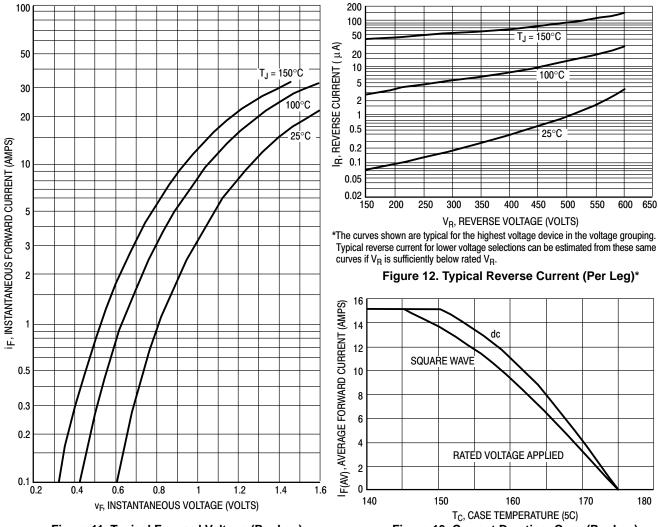


Figure 11. Typical Forward Voltage (Per Leg)

Figure 13. Current Derating, Case (Per Leg)

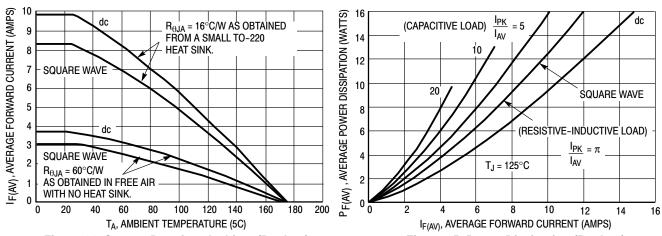


Figure 14. Current Derating, Ambient (Per Leg)

Figure 15. Power Dissipation (Per Leg)

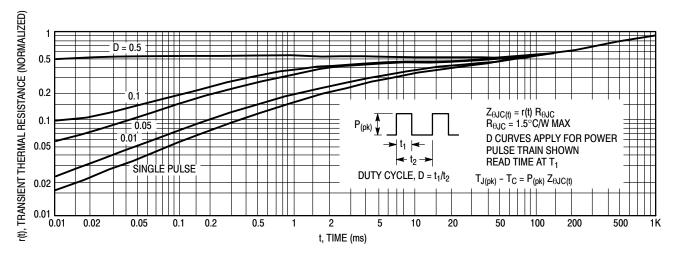


Figure 16. Thermal Response

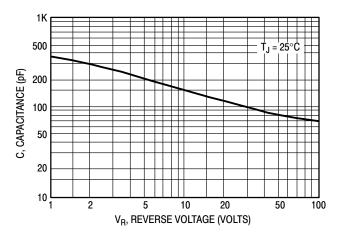
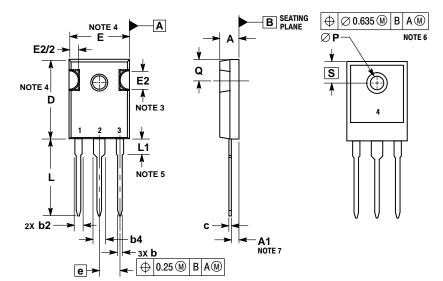



Figure 17. Typical Capacitance (Per Leg)

PACKAGE DIMENSIONS

TO-247 CASE 340AL **ISSUE A**

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 SLOT REQUIRED, NOTCH MAY BE ROUNDED.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
 MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY
- LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY
- ØP SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED

	MILLIMETERS			
DIM	MIN	MAX		
Α	4.70	5.30		
A1	2.20	2.60		
b	1.00	1.40		
b2	1.65	2.35		
b4	2.60	3.40		
С	0.40	0.80		
D	20.30	21.40		
E	15.50	16.25		
E2	4.32	5.49		
е	5.45	5.45 BSC		
L	19.80	20.80		
L1	3.50	4.50		
Р	3.55	3.65		
Q	5.40	6.20		
S	6.15 BSC			

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local

Sales Representative