1. General description

The 74LVC2G14 provides two inverting buffers with Schmitt-trigger action.

The inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device in a mixed 3.3 V and 5 V environment. Schmitt-trigger action at the inputs makes the circuit tolerant of slower input rise and fall time. This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features

- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant inputs for interfacing with 5 V logic
- High noise immunity
- Complies with JEDEC standard:
 - ◆ JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- ±24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Unlimited rise and fall times
- Input accepts voltages up to 5 V
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C.

3. Applications

- Wave and pulse shaper
- Astable multivibrator
- Monostable multivibrator

Dual inverting Schmitt trigger with 5 V tolerant input

4. Ordering information

Table 1. Ordering information							
Type number	Package						
	Temperature range	Name	Description	Version			
74LVC2G14GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363			
74LVC2G14GV	–40 °C to +125 °C	TSOP6	plastic surface-mounted package (TSOP6); 6 leads	SOT457			
74LVC2G14GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886			
74LVC2G14GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891			

5. Marking

Table 2. Marking	
Type number	Marking code
74LVC2G14GW	VK
74LVC2G14GV	V14
74LVC2G14GM	VK
74LVC2G14GF	VK

6. Functional diagram

Dual inverting Schmitt trigger with 5 V tolerant input

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description		
Symbol	Pin	Description
1A	1	data input
GND	2	ground (0 V)
2A	3	data input
2Y	4	data output
V _{CC}	5	supply voltage
1Y	6	data input

8. Functional description

Table 4.Function table

Input	Output
nA	nY
L	Н
Н	L

[1] H = HIGH voltage level;

L = LOW voltage level.

Dual inverting Schmitt trigger with 5 V tolerant input

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
Ι _{ΟΚ}	output clamping current	V_{O} > V_{CC} or V_{O} < 0 V	-	±50	mA
Vo	output voltage	Active mode	<u>[1][2]</u> –0.5	$V_{CC} + 0.5$	V
		Power-down mode	<u>[1][2]</u> –0.5	+6.5	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	<u>[3]</u> _	250	mW
T _{stg}	storage temperature		-65	+150	°C

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] When V_{CC} = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		1.65	-	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	Active mode	0	-	V _{CC}	V
		Power-down mode; $V_{CC} = 0 V$	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C

Dual inverting Schmitt trigger with 5 V tolerant input

11. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ 🚹	Max	Unit
T _{amb} = -	40 °C to +85 °C					
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –100 $\mu A;$ V_{CC} = 1.65 V to 5.5 V	$V_{CC} - 0.1$	-	-	V
		$I_0 = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	V
		$I_0 = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_0 = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_0 = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.3	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 $\mu A; V_{CC}$ = 1.65 V to 5.5 V	-	-	0.1	V
		$I_0 = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.3	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	V
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
		$I_0 = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
lı	input leakage current	$V_{\rm I}$ = 5.5 V or GND; $V_{\rm CC}$ = 0 V to 5.5 V	-	±0.1	±5	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 5.5 V; V_{CC} = 0 V	-	±0.1	±10	μA
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 \text{ A}$	-	0.1	10	μΑ
Δl _{CC}	additional supply current		-	5	500	μΑ
Cı	input capacitance	V_{CC} = 3.3 V; V_I = GND to V_{CC}	-	3.5	-	pF
T _{amb} = -	40 °C to +125 °C					
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = -100 μ A; V_{CC} = 1.65 V to 5.5 V	V _{CC} – 0.1	-	-	V
		$I_0 = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	0.95	-	-	V
		$I_0 = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	-	-	V
		$I_0 = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	1.9	-	-	V
		$I_0 = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	-	-	V
		$I_0 = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.4	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = 100 \ \mu\text{A}; \ V_{CC} = 1.65 \ V \ to \ 5.5 \ V$	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.7	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.6	V
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.8	V
		$I_0 = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.8	V
I	input leakage current	$V_{\rm I} = 5.5$ V or GND; $V_{\rm CC} = 0$ V to 5.5 V	-	-	±20	μA

Dual inverting Schmitt trigger with 5 V tolerant input

At recom	At recommended operating conditions; voltages are referenced to GND (ground = 0 V).							
Symbol	Parameter	Conditions	Min	Typ 🚹	Max	Unit		
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 5.5 V; V_{CC} = 0 V	-	-	±20	μΑ		
I _{CC}	supply current	$V_{\rm I}$ = 5.5 V or GND; $V_{\rm CC}$ = 1.65 V to 5.5 V; $I_{\rm O}$ = 0 A	-	-	40	μA		
ΔI_{CC}	additional supply current		-	-	5000	μA		

Table 7. Static characteristics ... continued

[1] All typical values are measured at maximum V_{CC} and T_{amb} = 25 °C.

Table 8. Transfer characteristics

Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 8

Symbol	Parameter	Conditions	-40	–40 °C to +85 °C			–40 °C to +125 °C	
			Min	Typ[1]	Max	Min	Max	
V_{T+}	positive-going	see Figure 9 and Figure 10	·	·				·
	threshold voltage	V _{CC} = 1.8 V	0.70	1.10	1.50	0.70	1.70	V
		$V_{CC} = 2.3 V$	1.00	1.40	1.80	1.00	2.00	V
		$V_{CC} = 3.0 V$	1.30	1.76	2.20	1.30	2.40	V
		$V_{CC} = 4.5 V$	1.90	2.47	3.10	1.90	3.30	V
		$V_{CC} = 5.5 V$	2.20	2.91	3.60	2.20	3.80	V
V_{T-}	negative-going threshold voltage	see Figure 9 and Figure 10						
		V _{CC} = 1.8 V	0.25	0.61	0.90	0.25	1.10	V
		$V_{CC} = 2.3 V$	0.40	0.80	1.15	0.40	1.35	V
		$V_{CC} = 3.0 V$	0.60	1.04	1.50	0.60	1.70	V
		$V_{CC} = 4.5 V$	1.00	1.55	2.00	1.00	2.20	V
		$V_{CC} = 5.5 V$	1.20	1.86	2.30	1.20	2.50	V
V _H hysteresis voltage		(V _{T+} – V _T); see <u>Figure 9,</u> <u>Figure 10</u> and <u>Figure 11</u>						
		V _{CC} = 1.8 V	0.15	0.49	1.00	0.15	1.20	V
		$V_{CC} = 2.3 V$	0.25	0.60	1.10	0.25	1.30	V
		$V_{CC} = 3.0 V$	0.40	0.73	1.20	0.40	1.40	V
		$V_{CC} = 4.5 V$	0.60	0.92	1.50	0.60	1.70	V
		$V_{CC} = 5.5 V$	0.70	1.02	1.70	0.70	1.90	V

[1] All typical values are measured at T_{amb} = 25 $^\circ C$

Dual inverting Schmitt trigger with 5 V tolerant input

12. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 8.

Symbol	Parameter	Conditions		–40 °C to +85 °C			−40 °C to +125 °C		Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	nA to nY; see Figure 7	[2]						
		V_{CC} = 1.65 V to 1.95 V		1.0	5.6	11.0	1.0	12.0	ns
		V_{CC} = 2.3 V to 2.7 V		0.5	3.7	6.5	0.5	7.2	ns
		$V_{CC} = 2.7 V$		0.5	4.1	7.0	0.5	7.7	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		0.5	3.9	6.0	0.5	6.7	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$		0.5	2.7	4.3	0.5	4.7	ns
C_{PD}	power dissipation capacitance	$V_{\rm I}$ = GND to $V_{CC};V_{CC}$ = 3.3 V	<u>[3]</u>	-	18.1	-	-	-	pF

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}{}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}{}^2 \times \mathsf{f}_o) \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.

13. Waveforms

NXP Semiconductors

74LVC2G14

Dual inverting Schmitt trigger with 5 V tolerant input

Supply voltage	Input	Output			
V _{cc}	V _M	V _M			
1.65 V to 1.95 V	$0.5 imes V_{CC}$	$0.5 \times V_{CC}$			
2.3 V to 2.7 V	$0.5 imes V_{CC}$	$0.5 \times V_{CC}$			
2.7 V	1.5 V	1.5 V			
3.0 V to 3.6 V	1.5 V	1.5 V			
4.5 V to 5.5 V	$0.5 imes V_{CC}$	$0.5 \times V_{CC}$			

Test data is given in Table 11.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 8. Load circuitry for switching times

Table 11. Test data

Supply voltage	Input		Load		V _{EXT}
V _{cc}	VI	$t_r = t_f$	CL	RL	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	\leq 2.0 ns	30 pF	1 kΩ	open
2.3 V to 2.7 V	V _{CC}	\leq 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open

Dual inverting Schmitt trigger with 5 V tolerant input

14. Waveforms transfer characteristics

Dual inverting Schmitt trigger with 5 V tolerant input

15. Application information

The slow input rise and fall times cause additional power dissipation, which can be calculated using the following formula:

 $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC}$ where:

 P_{add} = additional power dissipation (μ W);

 $f_i = input frequency (MHz);$

 t_r = input rise time (ns); 10 % to 90 %;

 t_f = input fall time (ns); 90 % to 10 %;

 $\Delta I_{CC(AV)}$ = average additional supply current (µA).

 $\Delta I_{CC(AV)}$ differs with positive or negative input transitions, as shown in Figure 12.

An example of a relaxation circuit using the 74LVC2G14 is shown in Figure 13.

Linear change of V₁ between 0.8 V to 2.0 V. All values given are typical unless otherwise specified.

- (1) Positive-going edge.
- (2) Negative-going edge.

NXP Semiconductors

74LVC2G14

Dual inverting Schmitt trigger with 5 V tolerant input

16. Package outline

Fig 14. Package outline SOT363 (SC-88)

Dual inverting Schmitt trigger with 5 V tolerant input

Fig 15. Package outline SOT457 (TSOP6)

Dual inverting Schmitt trigger with 5 V tolerant input

Fig 16. Package outline SOT886 (XSON6)

74LVC2G14_4 Product data sheet

Dual inverting Schmitt trigger with 5 V tolerant input

Fig 17. Package outline SOT891 (XSON6)

74LVC2G14_4 Product data sheet

Dual inverting Schmitt trigger with 5 V tolerant input

17. Abbreviations

Table 12. Abbreviations			
Acronym	Description		
CMOS	Complementary Metal Oxide Semiconductor		
TTL	Transistor-Transistor Logic		
HBM	Human Body Model		
ESD	ElectroStatic Discharge		
MM	Machine Model		
DUT	Device Under Test		

18. Revision history

Table 13.	Revision	history
-----------	----------	---------

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC2G14_4	20070904	Product data sheet		74LVC2G14_3
Modifications:	current.	11 "Static characteristics", ch Package outline SOT891 (XS	C C	put leakage and supply
74LVC2G14_3	20070220	Product data sheet		74LVC2G14_2
74LVC2G14_2	20040908	Product specification	-	74LVC2G14_1
74LVC2G14_1	20030731	Product specification		-

Dual inverting Schmitt trigger with 5 V tolerant input

19. Legal information

19.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

19.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

20. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

NXP Semiconductors

74LVC2G14

Dual inverting Schmitt trigger with 5 V tolerant input

21. Contents

1	General description 1
2	Features 1
3	Applications 1
4	Ordering information 2
5	Marking 2
6	Functional diagram 2
7	Pinning information 3
7.1	Pinning
7.2	Pin description 3
8	Functional description 3
9	Limiting values 4
10	Recommended operating conditions 4
11	Static characteristics 5
12	Dynamic characteristics 7
13	Waveforms 7
14	Waveforms transfer characteristics
15	Application information 10
16	Package outline 11
17	Abbreviations
18	Revision history 15
19	Legal information 16
19.1	Data sheet status 16
19.2	Definitions 16
19.3	Disclaimers 16
19.4	Trademarks 16
20	Contact information 16
21	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

founded by

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 September 2007 Document identifier: 74LVC2G14_4